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Abstract
1.	 A high level of variation of biodiversity recovery within a landscape during forest 
restoration presents obstacles to ensure large‐scale, cost‐effective and long‐last-
ing ecological restoration. There is an urgent need to predict landscape variation 
in forest restoration success at a global scale.

2.	 We conducted a meta‐analysis comprising 135 study landscapes to predict and 
map landscape variation in forest restoration success in tropical and temperate 
forest biomes. Our analysis was based on the amount of forest cover within a 
landscape — a key driver of forest restoration success. We contrasted 17 gen-
eralized linear models measuring forest cover at different landscape sizes (with 
buffers varying from 5 to 200 km radii). We identified the most plausible model 
to predict and map landscape variation in forest restoration success. We then 
weighted landscape variation by the amount of potentially restorable areas (agri-
culture and pasture land areas) within the same landscape. Finally, we estimated 
restoration costs of implementing Bonn Challenge commitments in three specific 
temperate and tropical forest biome types in the United States, Brazil and Uganda.

3.	 Landscape variation decreased exponentially as the amount of forest cover in-
creased in the landscape, with stronger effects within a 5 km radius. Thirty‐eight 
per cent of forest biomes have landscapes with more than 27% of forest cover and 
showed levels of landscape variation below 10%. Landscapes with less than 6% of 
forest cover showed levels of variation in forest restoration success above 50%.

4.	 At the biome level, Tropical and Subtropical Moist Broadleaf Forests had the low-
est (12.6%), whereas Tropical and Subtropical Dry Broadleaf Forests had the high-
est (22.9%) average of weighted landscape variation in forest restoration success. 
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1  | INTRODUC TION

Given high levels of deforestation and degradation of previously 
forested lands worldwide, together with serious threats from global 
climate change, several international and country‐led efforts aim to 
boost forest and landscape restoration. To date, over 59 commit-
ments have been pledged to restore 170 M ha of deforested lands by 
2030 under international initiatives such as the Bonn Challenge and 
the New York Declaration on Forests (Chazdon et al., 2017). These 
initiatives are supported by national governments, investors, devel-
opment banks, and bilateral and multilateral funders (Brancalion et 
al., 2017). They will require an estimated US$18–300 billion per year 
to be implemented (Ding et al., 2017). It is not clear how and when 
these funds will be available to restoration initiatives, but consen-
sus exists that each dollar invested in restoration needs to be spent 
in the most ecologically and economically efficient way (Ding et al., 
2017; Verdone & Seidl, 2017).

The cost‐effectiveness of restoration (e.g. actions generating 
greatest socio‐ecological benefit per unit of opportunity and/or im-
plementation cost) can differ widely among restoration initiatives 
(Birch et al., 2010; Molin, Chazdon, Ferraz, & Brancalion, 2018) and 
methods (Brancalion, Campoe, et al., 2019). Measured outcomes 
can range from near‐total success in achieving specific targets to 
complete failure (Crouzeilles, Curran, et al., 2016). Outcomes are 
strongly influenced by spatial variation in the ecological, biophysical 
and socio‐economic characteristics of landscapes where forest res-
toration is implemented (Crouzeilles et al., 2017; Meli et al., 2017). 
Investors operating in different businesses usually avoid high‐risk 
transactions, which likely constrains the flow of financial resources 
to restoration initiatives perceived as financially risky (Ding et al., 
2017). Thus, the high level of unpredictability in biodiversity recov-
ery in forests undergoing restoration (hereafter restoring forests) 
increases the risks associated with investments in ecological resto-
ration programmes. This high level of unpredictability can constrain 
both long‐term ecological sustainability and functionality, and ex-
pected multiple benefits of restoration for biodiversity, ecosystem 
services, and human well‐being.

Here, we develop a new approach to predict and map landscape 
variation in forest restoration success in tropical and temperate 
forest biomes. Landscape variation emerges from comparisons of 
values of biodiversity recovery (measured through multiple eco-
logical metrics for different taxonomic groups) between restoring 
and reference forests within different sampling sites in a landscape. 
Thus, our approach was developed by conducting a meta‐analysis 
on biodiversity recovery (e.g. Crouzeilles, Curran, et al., 2016) for 
developing spatially explicit maps that predict landscape variation 
in forest restoration success based on ecological and/or socio‐eco-
nomic factors. Our map identifies landscapes in previously forested 
lands where restoration is most likely to foster biodiversity recov-
ery towards levels typical of reference forest ecosystems. Our novel 
analysis opens new opportunities for policy‐makers, entrepreneurs, 
practitioners and researchers to (a) establish forest landscape res-
toration targets and identify cost‐effective priority areas for res-
toration, (b) improve regulations for biodiversity offsetting and (c) 
estimate implementation costs of forest restoration at a global scale. 
An important aspect of such an approach is estimating the effects 
of key ecological and/or socio‐economic factors affecting landscape 
variation and predicting them at a global scale.

The amount of forest cover within a landscape is easily measured 
using global land cover databases, and it is a key ecological driver 
of the forest restoration processes (reviewed by Leite, Tambosi, 
Romitelli, & Metzger, 2013). Forest cover can act both as a source of 
seeds for re‐colonization of native plant species and as a provider of 
critical habitat for seed dispersing animals (Chazdon, 2003; Helmer, 
Brandeis, Lugo, & Kennaway, 2008). Previous studies revealed that 
biodiversity recovery in restoring forests varies substantially de-
pending on the amount of forest cover in the landscape (Crouzeilles 
& Curran, 2016). Therefore, such relationship could be used to map 
variation in forest restoration success of other landscapes.

We propose a new conceptual model for the expected relation-
ship between the amount of forest cover in a landscape and land-
scape variation in forest restoration success (Figure 1). That is, in 
some landscapes, restoring forests are similar to the reference for-
ests in terms of the levels of biodiversity supported (Klanderud et al., 

Our approach can lead to a reduction in implementation costs for each Bonn 
Challenge commitment between US$ 973 Mi and 9.9 Bi.

5.	 Policy implications. Our approach identifies landscape characteristics that increase 
the likelihood of biodiversity recovery during forest restoration — and potentially 
the chances of natural regeneration and long‐term ecological sustainability and 
functionality. Identifying areas with low levels of landscape variation can help to 
reduce the risks and financial costs associated with implementing ambitious resto-
ration commitments.
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2010; implying low variation). In contrast, other landscapes exhibit 
high levels of variation in biodiversity recovery (Clarke, Rostant, & 
Racey, 2005; whereby the magnitude or even direction of the dif-
ference between restoring and reference forests is highly variable). 
Increasing variance in biodiversity recovery, in relation to reference 
conditions associated with highly deforested landscapes, tends to 
occur due to the (a) mixing of early and late successional species and 
non‐native species, (b) potential local extinction of late successional 
species and (c) lack of dispersal of species or propagules into restor-
ing forests (e.g. Crouzeilles & Curran, 2016; Holl & Aide, 2011).

In this study, based on a meta‐analysis for tropical and temperate 
forest biomes and comprising 135 landscapes, we asked, At which 
scale of effect does forest cover best predict the variation in restoration 
success within a landscape? We used this result to map landscape 
variation in forest restoration success in tropical and temperate 
forest biomes. We also asked, How does landscape variation change 
across major forest biomes and across countries? We used the map of 
landscape variation in forest restoration success, combined with 
data on per ha forest implementation costs and opportunity costs, 
to estimate restoration costs of implementing Bonn Challenge com-
mitments. We focused our estimates on three forest biome types 
and countries where restoration implementation costs were avail-
able: 15 M ha from USA in Temperate Broadleaf and Mixed Forests 
and Temperate Coniferous Forests, 1 M  ha from Brazil's Atlantic 
Forest Restoration Pact in Tropical and Subtropical Moist Broadleaf 
Forests, and 1 M ha from Uganda in Tropical and Subtropical Dry 
Broadleaf Forests. By identifying landscapes with low variance in 

forest restoration success, our approach may assist in reducing the 
risks of failure in large‐scale ecological forest restoration projects 
and facilitate the flow of financial investments needed to implement 
the ambitious restoration commitments planned at a global scale.

2  | MATERIAL S AND METHODS

2.1 | Forest restoration database

Crouzeilles, Ferreira, and Curran (2016) built an extensive forest 
restoration database encompassing 269 original studies across 221 
study landscapes (based on the geographic coordinates reported by 
the original studies) and which contains 4,645 quantitative compari-
sons between reference forests and degraded systems or restor-
ing forests for biodiversity and vegetation structure. They defined 
reference forests as old‐growth or less disturbed forest; degraded 
systems as different types of human land use (e.g. plantation or ag-
riculture); restoring forests as passively or actively restoring native 
and non‐native forests in their initial or secondary stage of succes-
sion; biodiversity as plants, mammals, birds, herpetofauna and inver-
tebrates measured through ecological metrics (abundance, richness, 
diversity or similarity); and vegetation structure (cover, litter, den-
sity, height and biomass).

From this database, we selected original studies that included 
comparisons between reference and restoring forests for biodiver-
sity and information on the time since restoration started. We used 
the last criterion to investigate whether our results were affected 
by the time since restoration started. In total, our analysis encom-
passed 135 study landscapes (Figure 2) and contained 2,063 quanti-
tative comparisons between reference and restoring forests for the 
recovery of biodiversity (29.8% of the comparisons for birds, 29.2% 
for invertebrates, 24.2% for plants, 12.9% for mammals and 3.9% 
for herpetofauna). Data on species richness (39%) and abundance 
(37%) were more frequent than for species diversity and similarity 
(12% each), which are more sensitive ecological metrics to measure 
changes in community composition. Most of the study landscapes 
(79%) were located in Tropical and Subtropical Moist Broadleaf 
Forests (Figure 2), but we mapped the landscape variation in for-
est restoration success across all forest biomes. This was because 
Crouzeilles, Curran, et al. (2016) found no significant geographical 
variation in predictors of forest restoration success.

2.2 | Forest cover dataset

Crouzeilles and Curran (2016) built a forest cover data layer based on 
the recent 1 km resolution consensus land cover dataset, derived from 
combining three existing land cover products (GLC 2000, MODIS 2005 
and ESA GlobCover 2008; Tuanmu & Jetz, 2014). This ‘reduced’ data-
set avoids the influence of pre‐2000 deforestation (product DISCover 
from 1995) and includes three land cover classes (evergreen/deciduous 
needleleaf trees, evergreen broadleaf trees and deciduous broadleaf 
trees) to represent the extent of forest vegetation within landscapes as 
robustly as possible. From this database, we calculated the percentage 

F I G U R E  1  Conceptual model showing the expected relationship 
between the amount of forest cover (%) in a landscape and 
variation in forest restoration success. Landscape variation in 
forest restoration success is defined as the variation of biodiversity 
recovery in relation to the values found in the reference condition. 
Low variation occurs when restoring forests are consistently 
similar in the levels of biodiversity supported compared to the 
reference forests, whereas large variance in biodiversity recovery 
is associated with highly deforested landscapes and tends to 
occur due to the mixing of early and late successional species and 
non‐native species, extinction of late successional species and lack 
of dispersers. The blue line represents the expected relationship 
between x and y variables and the grey area represents the 
confidence interval which tends to decrease for higher values of 
the amount of forest cover.

La
nd

sc
ap

e 
va

ria
tio

n

0

+

% forest cover
0 100



4  |    Journal of Applied Ecology CROUZEILLES et al.

of overall and continuous forest cover within eight different buffer 
sizes (with 5, 10, 25, 50, 75, 100, 150 and 200 km of radius) for the same 
study landscapes reported in the forest restoration database. Overall 
forest cover includes all forest remnants ≥9 ha, whereas continuous 
forest cover includes only 1 km pixels with a minimum percentage of 
60% of forest cover. The lowest buffer size was 5 km radius because 
the median distance between sites within a study landscape was 5 to 
3 km (M. Curran, unpublished data), whereas the largest buffer size is 
two orders of magnitude bigger than the lowest, following the recom-
mendations of Jackson and Fahrig (2015).

2.3 | Response ratio variation

We used response ratios (RR; Hedges, Gurevitch, & Curtis, 1999) to 
measure the standardized mean effect size of comparisons between 
restoring and reference forests within the same study (such as a con-
trol–treatment experiment; Equation 1). Multiple RRs can be calculated 
within the same study landscape (e.g. multiple ecological metrics for dif-
ferent taxonomic groups within different sampling sites), but the amount 
of forest cover is the same within a given study landscape (for a given 
buffer size). Therefore, we developed an equation to estimate landscape 
variation in biodiversity recovery (measured through multiple response 
ratios within a landscape) relative to the ‘full’ restoration success within 
each study landscape (defined as landscape variation in forest restoration 
success; LVFRS). We calculated the difference between each measured 
RR for each taxonomic group (hereafter RRm,t) in relation to the RR of 
the ‘full forest restoration success’ (RRfrs; which is obtained when restor-
ing forests are equal to reference forests in terms of biodiversity value, 
hence RRfrs = 0) within the same study landscape (Equation 2):

where RRm,t is each measured response ratio, x̄ is the mean value for 
a quantified ecological metric for biodiversity within all sampling lo-
cations of an original study representing either restoring or reference 
forests, RRfrs is the response ratio when both restoring and reference 
forests have the same quantitative value for biodiversity (RRfrs = 0), n 
is the number of response ratios within a study landscape, and RRV is 
the variance of RRm,t around the RRfrs. RRV depends upon the amount 
of forest cover in the landscape and it ranges from zero to positive val-
ues. Values close to zero are the desired outcome of restoration proj-
ects, that is, there is low variation of restoration outcomes in bringing 
biodiversity in a restoring forest back to the reference system state. To 
avoid extreme RRs that may affect modelling of RRV, we removed the 
highest and lowest 0.25% RR values from our database, which corre-
sponds to RRs > 0.4 and RRs < −0.4, totalling 11 RRs.

2.4 | Model selection

We used an information theoretic approach (Akaike Information 
Criterion; Burnham & Anderson, 2002) to identify the buffer 
size within which the percentage of overall or contiguous forest 
cover best predicted landscape variation in forest restoration 
success. We compared 17 generalized linear models, with buffer 

(1)RRm= ln

(
x̄restored

x̄reference

)

(2)RRV=

n∑
i=1

(
RRm−RRfrs

)2
n−1

F I G U R E  2  Map of 135 study landscapes across the five originally forested biomes. Study landscapes are represented by red dots.
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size varying from 5 to 200  km (5, 10, 25, 50, 75, 100, 150 and 
200 km radius) and with data on either continuous or overall for-
est cover, plus a null model. We modelled landscape variation in 
forest restoration success assuming a gamma distribution where 
the values were continuous and varying between 0 and posi-
tive infinite (Bolker, 2008). We log‐transformed the percentages 
of overall and contiguous forest cover following Crouzeilles and 
Curran (2016) because these could be non‐linearly related with 
landscape variation in forest restoration success. We avoided 
pseudo‐spatial‐auto‐correlation using only one value of landscape 
variance per study landscape. For each model, we calculated the 
Akaike Information Criterion corrected for small samples (AICc), 
the ΔAICc as AICci − minimum AICc, and the Akaike weight (wi), 
which indicates the probability that the model i is the best model 
within the set. Finally, we also calculated an evidence ratio, which 
was used to compare the model's relative goodness of fit (w1/wj, 
where model 1 is the estimated best model and j indexes the rest 
of the models in the set; Burnham & Anderson, 2002). Models with 
ΔAICci < 2 can be considered equally plausible, but we considered 
the top‐ranked model only (i.e. lowest AICc and highest wi). This 
was because we were interested in the model that best explained 
landscape variation in forest restoration success.

Many factors (e.g. climate and land use change) may affect land-
scape variation in forest restoration effectiveness for biodiversity 
(Spake & Doncaster, 2017), but the effects of such factors on land-
scape variation have not previously been studied. We therefore 
focused on the strong and recognized relationship between forest 
cover and landscape variation in forest restoration success (e.g. 
Crouzeilles & Curran, 2016). However, we also investigated whether 
landscape variation in forest restoration success was affected by 
either the number of response ratios within a study landscape (i.e. 
number of comparisons between restoring and reference forests 
for biodiversity) or the time since restoration started using Pearson 
regressions. We did not include both the number of response ra-
tios and the time since restoration started in the model selection 
because we aimed to build a spatially explicit predictive model, that 
is, we needed to work only with variables that were predictable in 
space, which does not apply to sample size and time since resto-
ration started.

2.5 | Mapping landscape variation in forest 
restoration success in tropical and temperate 
forest biomes

To define our study area, we considered only tropical and temperate 
forest biomes, based on a geospatial dataset (Dinerstein et al., 2017). 
We then used the updated version (2016) of the geospatial dataset 
from the 21st‐century forest cover change between 2000 and 2012 
(Hansen et al., 2013; updated version is available at Global Forest 
Watch, 2016) to map forested and non‐forested areas. This dataset 
contains information on the amount of vegetation taller than 5 m in 
height within each 30 m pixel for the year 2000, as well as pixels sub-
ject to forest loss between 2001 and 2016. To obtain values for forest 

cover in 2016, we excluded forest loss pixels between 2001 and 2016 
from the forest cover map of 2000. We resampled the forest cover 
map of 2016 to 1 km pixel size, the same resolution of the forest cover 
dataset from Crouzeilles and Curran (2016). That is, the amount of tree 
canopy cover within a 1 km pixel size was the mean of the tree canopy 
cover of all the 30 m pixels that fell within the 1 km pixel.

We masked non‐restorable areas within the forest biomes. We 
considered non‐restorable areas to be 1 km pixels with 100% of tree 
canopy cover, urban areas, water bodies as well as locations that 
were not previously forested (e.g. grasslands). We obtained data on 
1 km pixels with 100% tree canopy cover from the forest cover map 
in 2016. We obtained data on urban areas and water bodies from 
the global CCI‐LC map (ESA Climate Change Initiative, 2017). We 
also considered wetlands as non‐restorable places because the res-
toration of wetlands demands different kinds of management than 
examined in this study. We obtained data on wetlands from GIEMS‐
D15 (Fluet‐Chouinard, Lehner, Rebelo, Papa, & Hamiton, 2015; 
Prigent, Papa, Rossow, & Matthews, 2017).

We used the best fitting model from the model selection (see 
the Results section) to map landscape variation in forest restoration 
success (LVFRS). Thus, we calculated the percentage of forest cover 
surrounding each 1 km focal pixel within a buffer size of 5 km radius 
and then applied the global equation for each potential pixel to be 
restored, and the equations is as follows (Equation 3):

where the buffer size of 5 km radius was the top‐ranked model to 
predict the effects of percentage of forest cover on landscape varia-
tion in forest restoration success. Finally, we standardized landscape 
variation in forest landscape restoration success (SLVFRS) to vary 
between 0% (minimum variation) and 100% (maximum variation; 
Equation 4):

When landscape variation is 100%, it means that restoration suc-
cess for biodiversity is highly variable (i.e. unpredictable).

2.6 | Bonn challenge commitments as a case study

We used three Bonn Challenge commitments to show how our ap-
proach can be used to estimate implementation costs of forest res-
toration in different types of forest biomes. These are as follows: 
15 M ha from USA in Temperate Broadleaf and Mixed Forests and 
Temperate Coniferous Forests, 1 M ha from Brazil's Atlantic Forest 
Restoration Pact in Tropical and Subtropical Moist Broadleaf 
Forests, and 1 M ha from Uganda in Tropical and Subtropical Dry 
Broadleaf Forests. Uganda committed 2.5 M ha of three types of 
native vegetation (forests, savannahs and grasslands) for restora-
tion, but the largest areas are for forest restoration. We assumed 

(3)

LVFRS=1.37595−0.23498∗

lognatural

⎛
⎜⎜⎝

%overall forest cover with a

buffer of 5km radius+1

⎞
⎟⎟⎠

(4)SLVFRS=
LVFRS−LVFRSmin

LVFRSmax−LVFRSmin

∗100
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at least 1 M ha of forests as our targeted area for restoration in 
Uganda.

To estimate the total implementation cost of each commit-
ment, we made the following assumptions: (a) implementation cost 
is linearly positively related with the landscape variation in forest 
restoration success (i.e. restoration is more expensive in land-
scapes with higher variation in forest restoration success — this 
is a potential surrogate of the lower chances of natural regenera-
tion and long‐term ecological sustainability and functionality; e.g. 
Strassburg et al., 2019) and (b) the total restoration area pledged 
will be implemented within landscapes with either the lowest 
landscape variation or the lowest opportunity costs. Thus, imple-
mentation cost was estimated using (Equation 5):

where SLVFRS is the standardized landscape variation, and full tree 
planting cost represents the most expensive method for active res-
toration. Implementation cost will be higher when the SLVFRS is 
lower. The per ha full tree planting cost was estimated to be (US$ 
mean ±  standard deviation): 677 ± 363 in USA (Crawford County 
Conservation Districts, 2007; Stringer, 2009; Virginia Department 
of Forestry, 2018), 3,504  ±  915 in the Brazilian Atlantic Forest 
(Benini & Adeodato, 2017; Serviço Florestal Brasileiro, 2017) and 
1,179  ±  439 in Uganda (Ministry of Water & Environment, 2016; 
Omeja et al., 2011; Omeja, Obua, Rwetsiba, & Chapman, 2012).

We estimated the reduced implementation cost of prioritiz-
ing natural regeneration when SLVFRS is low compared to the 
cost of implementing only full tree planting as the restoration 
method used to reach each target committed. We also estimated 
the total opportunity cost for each commitment when identifying 
landscapes with either the lowest landscape variation or lowest 
opportunity costs. Opportunity cost represents the cost of set-
ting aside land for restoration instead of using it for other pur-
poses. We calculated total opportunity cost based on Naidoo and 
Iwamura (2007).

3  | RESULTS

3.1 | At which scale of effect does forest cover best 
predict the variation in restoration success within a 
landscape?

Our top‐ranked model explaining landscape variation in forest res-
toration success included the percentage of overall forest cover 
measured at a buffer size of 5 km (wi = 0.4; Table 1 and Figure 3). 
The second‐ranked model, which included the percentage of overall 
forest cover measured at a buffer size of 10 km radius, was equally 
plausible (ΔAICci = 1.09, wi = 0.23). The evidence ratio of the top‐
ranked model was only 1.74 times higher than the second‐ranked 
model, but 400 times higher than the null model, highlighting the 
importance of forest cover in explaining landscape variation in for-
est restoration success (Table 1). We selected the top‐ranked model 
to build the map of landscape variation in forest restoration success 

(Table 1). If the second‐ranked model was used, we would expect 
similar results, as variables included in the top‐ranked and second‐
ranked models (percentage of forest cover at 5 km and 10 km radius, 

(5)Inplementation cost=SLVFRS∗US$ full tree planting cost

TA B L E  1  Performance of 17 models predicting the landscape 
variation in forest restoration success

Model AICc ΔAICc wi

Overall 5 km 206.33 0.00 0.40

Overall 10 km 207.42 1.09 0.23

Continuous 200 km 208.63 2.30 0.13

Overall 25 km 209.62 3.29 0.08

Continuous 150 km 209.7 3.38 0.07

Continuous 100 km 211.56 5.23 0.03

Overall 50 km 211.89 5.57 0.02

Continuous 75 km 213.88 7.55 0.01

Overall 75 km 214.51 8.18 0.01

Overall 100 km 215.95 9.63 0.00

Continuous 50 km 216.23 9.90 0.00

Continuous 25 km 216.92 10.59 0.00

Null 217.79 11.47 0.00

Continuous 10 km 218.31 11.98 0.00

Overall 150 km 219.25 12.92 0.00

Continuous 5 km 219.62 13.29 0.00

Overall 200 km 219.88 13.55 0.00

Note: Overall = percentage of overall forest cover, Continuous = per-
centage of continuous forest cover, km = km radius. A null model was 
also included for comparison. AICc = Akaike Information Criterion 
corrected for small ratio of sample size/number of parameters, 
ΔAICc = AICc − minimum AICc, wi = Akaike weight.

F I G U R E  3  Relationship between landscape variation in forest 
restoration success for biodiversity and percentage of overall 
forest cover measured at a buffer size of 5 km radius (x‐axis) for 
biodiversity. Points represent variation in forest restoration success 
obtained from all response ratios at each study landscape. Blue 
line = mean value and grey line = 95% confidence intervals.
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respectively) were 98% correlated. We found that landscape varia-
tion in forest restoration success was neither affected by the sam-
ple size (Pearson's r = .11, p = .19) nor by the time since restoration 
started (Pearson's r = −.02, p = .85).

3.2 | How landscape variation change across major 
global forest biomes and across countries?

Landscape variation in forest restoration success ranged from <1 
to 85% (0% = minimum variation and 100% = maximum variation; 
Figure 4). Landscapes (1 × 1 km pixel) with more than 27% of forest 
cover showed low levels of variation in forest restoration success 
(below 10%). Below this threshold level of forest cover, landscape 
variation increased substantially. Landscapes with less than 6% of 
forest cover showed high levels of variation in forest restoration suc-
cess above 50%.

After weighting the landscape variation in forest restoration suc-
cess by the amount of restorable areas within the same landscape 
(1 × 1 km pixel), Tropical and Subtropical Moist Broadleaf Forests 
had lower predicted average landscape variation (12.6%), whereas 
Tropical and Subtropical Dry Broadleaf Forests had higher land-
scape variation (22.9%) compared to the other biomes (see Table 
S1). At the country level, French Guiana had the lowest, (0.6%) 
whereas Somalia, the highest (56.9%) average of weighted land-
scape variation in forest restoration success (Table S2). Among the 
five countries with the largest areas potentially restorable (i.e. pre-
viously forested areas currently occupied by other land uses; China, 
Russia, Brazil, the United States and India; in descending order of 

availability), the United States has the lowest (14.8%) and India has 
the highest (40.3%) average of weighted landscape variation in for-
est restoration success (Table S2).

3.3 | Bonn challenge commitments as a case study

The total restoration cost (implementation and opportunity costs com-
bined) of forest restoration varied among the three Bonn Challenge 
commitments used as case studies. In each region, we identified (a) the 
landscapes with lowest variation in forest restoration success and (b) 
the landscapes with lowest opportunity costs, to reach each commit-
ted target (Figure 5). These simulations aggregated both national‐scale 
implementation costs and per ha opportunity costs assuming that less 
expensive restoration methods, such as natural regeneration, are pri-
oritized for forest restoration implementation. Implementation costs 
based on full tree planting varied from US$ 216 Mi (±273 – 160 Mi) 
to 11 billion (±16 − 5 Bi).

When prioritizing landscapes with lowest landscape varia-
tion, our approach led to a reduction in implementation costs for 
each commitment from US$ 973 Mi (±1.3  Bi  –  610 Mi) to 9.9 Bi 
(±15 − 4.6 Bi) below costs incurred either using full tree planting as 
the sole restoration method (Figure 5). Our approach also led to a 
reduction in implementation costs for each commitment from US$ 
71 Mi (±97 – 44 Mi) to 1.3 Bi (±2.0 Bi – 600 Mi) when compared to 
prioritizing forest restoration in landscapes with lowest opportunity 
cost but based on full tree planting (Figure 5). That is, our solutions 
were 26% to 82% less expensive than solutions based on the lowest 
opportunity costs. On the other hand, our approach was from 12 Mi 

F I G U R E  4  Map of landscape variation in forest restoration success (FRS) for the five forest biomes. Non‐restorable areas are considered 
1 km pixels with 100% of tree canopy cover, urban areas, water bodies, wetlands and areas that were not previously forested (e.g. 
grasslands).
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to 282 Mi more expensive in terms of opportunity cost than when 
identifying landscapes with lowest opportunity costs.

4  | DISCUSSION

As expected, landscape variation in forest restoration success in 
temperate and tropical forest biomes decreased exponentially as 
the amount of forest cover increased within a landscape. We found 
the strongest scale of effects was within a buffer size of 5 km radius 
— followed by an equally plausible model measuring forest cover 
at a buffer size of 10  km radius. That is, both restoration success 
(see Crouzeilles & Curran, 2016) and its variation in relation to the 
quantitative values of biodiversity found in reference systems are 
best predicted by forest cover within a buffer size (landscape) of 5 
to 10 km in radius.

We mapped, for the first time, landscape variation in forest res-
toration success across major forest biomes, which is higher across 
countries than across the biomes. Landscapes where the forest 
cover has declined below 30% show increased landscape variation 
in forest restoration success. Nonetheless, the good news is that the 
forest biomes with larger potentially restorable areas are those with 
lower landscape variation in forest restoration success (Temperate 
Broadleaf and Mixed Forests, Temperate Conifer Forests, and 
Tropical and Subtropical Moist Broadleaf Forests). Despite the large 
amount of deforested land worldwide (Hansen et al., 2013; Lewis, 
Edwards, & Galbraith, 2015), 38% of the 172 countries (238 M ha) 
that had previously forested areas still have low levels (≤10%) of 
landscape variation in forest restoration success, on average (Table 
S2). Countries with marginally higher weighted landscape variation 
but more restorable areas also may be considered as no‐regret tar-
gets for private restoration investments, such as Brazil and Russia 
(with 324 M ha restorable areas). Therefore, our new approach can 
help to identify landscapes with reduced risks of ecological forest 
restoration success, a critical first step to implementing large‐scale, 
long‐lasting and cost‐effective forest restoration interventions.

Our robust methodological approach (including a new metric to 
measure variation in restoration outcomes) provides a novel tem-
plate for developing predictive models and maps to better guide 
forest restoration investments and policies (see Molin et al., 2018). 
Other ecological and socio‐economic variables that affect forest res-
toration at the landscape scale (e.g. Crouzeilles et al., 2017) also may 
result in similar patterns of variation in restoration outcomes, such 
as past disturbance, rural migration and precipitation. However, such 
potential variations have not yet been examined and are beyond the 
scope of this study. Future studies should explore whether these re-
lationships can be meaningfully predicted and mapped. In our case, 
landscape variation in forest restoration success was not affected 

by higher levels of replication (i.e. number of response ratios within 
a study landscape), but it needs to be investigated in future studies 
using our approach. Although the approach developed here was ap-
plied on a global scale, it also can be easily replicable at smaller scales 
to solve local questions using on‐the‐ground comparisons of biodi-
versity recovery between restoring and reference forests.

It is important to note that the studies in our meta‐analysis 
measured variation in forest restoration success under favourable 
landscape conditions, as publications on forest restoration may 
have a bias towards positive results (Reid, Fagan, & Zahawi, 2018). 
Moreover, not all restoration initiatives measure restoration success 
based on biodiversity responses and often focus on other outcomes 
such as ecosystem services provisioning, local livelihoods and finan-
cial returns. Nevertheless, our map is useful for guiding decision‐
making under several different circumstances, such as (a) prioritizing 
landscapes for restoration with a focus on recovery of biodiversity, 
(b) improving regulations on biodiversity offsetting and (c) estimat-
ing implementation costs of forest ecological restoration at the 
global scale. Complementarly, although other diverse outcomes may 
be specifically targeted by restoration programmes, biodiversity re-
covery is a pre‐requisite for all restoration processes, as it is a surro-
gate of a myriad of contributions of restoration to people and nature.

4.1 | Helping to unlock investments in forest 
landscape restoration

Our approach may help unlock the flow of funds to implement the 
ambitious restoration commitments planned worldwide. For exam-
ple, the financial feasibility of restoration is a critical criterion when 
identifying priority areas for cost‐effective restoration (Brancalion, 
Niamir, et al., 2019; Strassburg et al., 2019). The financial feasibility 
of restoration is dependent on landscape variation in forest restora-
tion success because risky restoration initiatives (with unpredicted 
outcomes) are unlikely to attract investors (Brancalion, Niamir, et al., 
2019; Brancalion et al., 2017), may rely more heavily on public funds 
(Ding et al., 2017) and can have higher costs. Costly, labour‐intensive 
interventions may be needed for kickstarting restoration processes 
and adaptive management interventions, potentially essential for 
safeguarding a favourable restoration trajectory. Identifying land-
scapes with low risks of restoration success can encourage greater 
restoration investments from the private sector in countries with 
lower average of weighted landscape variation, such as Suriname, 
French Guiana, Solomon Islands, Dominica and Palau (the top five 
countries; always with values <3%, Table S2). Alternatively, the pub-
lic sector and governments may decide to spatially complement pri-
vate investments in restoration that target less risky interventions 
and concentrate the bulk of their investments on restoration in more 
risky landscapes such as those in highly deforested areas. In these 

F I G U R E  5  Three Bonn Challenge commitments used as case study to identify landscapes with lowest either landscape variation in 
forest restoration success (FLS) (a1, b1, c1) or opportunity costs (a2, b2, c2), to reach each committed target. These are (a) Atlantic Forest 
Restoration Pact with 1 M ha in Tropical and Subtropical Moist Broadleaf Forests, (b) USA with 15 M ha in Temperate Broadleaf and Mixed 
Forests and Temperate Coniferous Forests and (c) Uganda with 1 M ha in Tropical and Subtropical Dry Broadleaf Forests.
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cases, restoration outcomes may focus less on biodiversity recovery, 
and more on improving local food security, the supply of ecosys-
tem services (e.g. carbon storage, water quality, fuel wood or timber) 
and/or supporting local livelihoods (e.g. Strassburg et al., 2019).

4.2 | Supporting biodiversity offsetting with forest 
landscape restoration

The lack of a robust mechanistic understanding of landscape varia-
tion underpinning forest restoration success has precluded the use 
of restoration initiatives as a reliable operational approach to com-
pensate for environmental degradation (e.g. biodiversity offsets; 
Budiharta et al., 2018; Maron et al., 2012; Moilanen, Teeffelen, Ben‐
Haim, & Ferrier, 2009). Thus, our map can be used to support and 
develop new regulations and policies for biodiversity offsetting, in 
which the total area to be restored can be weighted by values for 
landscape variation in forest restoration success. This weighting 
would require larger areas to be restored where landscape variation 
is higher, or prohibit compensatory restoration in areas with land-
scape variation above a given threshold. For example, several land-
scapes across countries (top five: Somalia, Seychelles, Iraq, Benin 
and Madagascar; in descending order) with high weighted landscape 
variation (>41%, Table S2) may be too risky to permit compensatory 
restoration. In these cases, halting and reversing deforestation above 
a given threshold in terms of amount of  forest cover will facilitate 
recovery and reduce the risk of irreversible biodiversity decline (e.g. 
Pardini, Arruda Bueno, Gardner, Prado, & Metzger, 2010). It is criti-
cal to highlight, however, that our map does not account for spe-
cies uniqueness and complementarity. Thus, biodiversity offsetting 
mechanisms must be supported by additional critical biodiversity 
data.

4.3 | Bonn challenge commitments as study cases

The restoration target in the Bonn Challenge is 350 M ha of restored 
forests by 2030, with 170 M ha within 59 commitments pledged to 
date (Bonn Challenge, 2018). Most of these commitments are based 
on a ‘forest landscape restoration’ approach, which aims to enhance 
the ecological functionality of deforested landscapes (Chazdon et 
al., 2017). Although achieving reference ecosystem levels of bio-
diversity is not the main focus of these programmes, biodiversity 
recovery will certainly play a central role in recovering diverse 
ecological functions (Kaiser‐Bunbury et al., 2017; Strassburg et al., 
2019). Landscapes with lower levels of variation in forest restora-
tion success are more likely to be successfully restored as they are 
characterized by more forest cover in surrounding areas, which is a 
strong predictor of success (e.g. Crouzeilles & Curran, 2016; Leite 
et al., 2013). We have shown that the implementation costs of for-
est restoration could potentially be reduced by more than 80%–97% 
if our approach is adopted (i.e. identifying landscapes with low-
est landscape variation) instead of the widely preferred use of full 
tree planting as a restoration method (Chazdon, 2014; Chazdon & 
Guariguata, 2016). Although our approach increases opportunity 

costs by US$ 12 Mi, 28 Mi and 282 Mi compared to prioritizing res-
toration in landscapes with lowest opportunity cost, these costs are 
compensated for by a reduction in implementation costs, which are 
US$ 121 Mi, 71 Mi and 1.3 Bi for Brazilian Atlantic Forest, Uganda 
and US commitments, respectively. These results highlight the im-
portance of our map as a tool to help decision‐makers overcome a 
critical barrier — identifying landscapes where low‐cost restoration 
methods based on natural regeneration processes can be imple-
mented for large‐scale restoration (Chazdon & Guariguata, 2016).

5  | CONCLUSIONS

We found that variation in forest restoration success at the land-
scape scale was strongly associated with the forest cover remain-
ing within the landscape. Ensuring the persistence of native forests 
(Reid et al., 2017) and integrating restoration with conservation 
practices and policies are key elements for forest restoration suc-
cess. Four key recommendations arise from this study. First, it is es-
sential to halt deforestation, particularly in areas where forest cover 
in the landscape declines below 30%. Second, commencing restora-
tion on landscapes with low (<10%) levels of variation in forest resto-
ration success may attract the levels of financial investment needed 
to fund large‐scale restoration focused on biodiversity recovery. 
Third, restoration in areas with high landscape variation (>50%) will 
be costly and may not be effective for restoring native biodiversity. 
Nevertheless, landscape restoration initiatives in these areas can be 
vitally important for increasing the supply of a wide range of ecosys-
tem services and improving socio‐economic conditions. Therefore, 
restoration in these areas should be a planned process also consid-
ering other landscape factors to increase forest cover as a whole 
and consequently decrease the variation in forest restoration suc-
cess. Fourth, given limited financial resources to invest in forest and 
landscape restoration, our results can help guide restoration efforts 
towards landscapes where restoration interventions will yield higher 
cost‐effectiveness for biodiversity conservation.
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