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A B S T R A C T   

Species extinction risk status is critical to support conservation actions. However, full assessments published on 
the Red List are slow and resource intensive. To tackle assessments for mega-diverse groups, gains can be made 
through preliminary assessments that can help prioritize efforts toward full assessments. Here, we quantified how 
incomplete data collation and errors in the taxonomic, spatial, and temporal dimensions of species-occurrence 
data translate into misclassifications of extinction risk. Using a dataset of >30 million records of terrestrial 
plants occurring in Brazil compiled from nine databases we conducted preliminary risk assessments for ~94 % of 
the 6046 species assessed by the Brazilian Red List authority. We found that no unique database contained data 
sufficient to perform extinction risk assessment of all species; e.g., the risk of 78 % of species can be assessed 
using data from GBIF. The overall accuracy (66–75 %) and specificity (89–98 %, correct prediction of non- 
threatened species) were less affected by incomplete data collation and issues in species-occurrence records. 
Sensitivity rates (correct prediction of threatened species) were commonly low to moderate and strongly affected 
by incomplete data collation (13–47 %) and spatial issues (38 %). Our results demonstrate that species' pre
liminary risk assessments have high accuracy in identifying non-threatened species, even when data collection is 
low and in the presence of issues in species occurrence data highlighting that such an approach can be used to 
efficiently prioritize species for full Red List assessments. In addition, caution is needed before declaring a species 
as threatened without considering data collation intensity and quality.   

1. Introduction 

Recent years have seen an explosion in the availability of species- 
occurrence data shared in online databases (Canhos et al., 2015; Gra
ham et al., 2004). Such openly accessible biodiversity databases provide 
a vast and invaluable resource to document species distributions for 
many research uses (e.g., biogeographic studies, ecological applications, 
and conservation decision making; Ball-Damerow et al., 2019). How
ever, the accumulation of large datasets may, without scrutiny, 

propagate errors that might influence outputs (Maldonado et al., 2015). 
An example of this is the evaluation of extinction risk as applied in 
systems such as the International Union for Conservation of Nature 
(IUCN) Red List of Threatened Species, hereafter the Red List (IUCN, 
2012). 

The Red List is the most comprehensive and authoritative source of 
information on the global extinction risk of species (Rodrigues et al., 
2006). It is used to assign species to categories of extinction risk based on 
a set of five quantitative criteria (symptoms of extinction risk) associated 
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with population size, geographic distribution, and rates of decline of 
both (IUCN, 2012). Due mainly to its rigorous process, full Red List as
sessments have been proven to be expensive and time-consuming (Miller 
et al., 2012; Rondinini et al., 2014). Although full Red List assessments 
have been carried out for several groups of vertebrates, less well-known 
and species-rich groups such as invertebrates and plants remain largely 
under-assessed, especially in tropical regions (Nic Lughadha et al., 
2019a; Bachman et al., 2019). Rapid, automatically generated assess
ments have been proven crucial to expediting and assisting the pro
duction of full Red List assessments (Nic Lughadha et al., 2019b). Such 
approaches produce a preliminary assessment of species extinction risk 
based on digitally available species distribution data and can be used to 
efficiently prioritize likely threatened species for full Red List assess
ments (Bachman et al., 2019; Nic Lughadha et al., 2019b; Zizka et al., 
2021). They are considered preliminary because other criteria and sub- 
criteria must be met to justify a full Red List assessment (IUCN, 2012). 

Data availability and quality are crucial for species extinction risk 
assessments, particularly preliminary automated estimates based on 
geographical range size (criterion B; Nic Lughadha et al., 2019a; Zizka 
et al., 2020, 2021; Panter et al., 2020). Issues related to difficulties in 
standardizing and integrating data from different sources (e.g., GBIF and 
SpeciesLink; Kissling et al., 2018), discrepancies and errors in taxonomic 

and nomenclatural data (Nic Lughadha et al., 2019a), and errors and 
inaccuracies in geographical and temporal information of primary 
species-occurrence data (e.g., Meyer et al., 2016) may lead to under-or 
over-estimation of species range size and therefore incorrect classifica
tion of extinction risk. These errors, in turn, may trigger inappropriate 
conservation responses (Brummitt et al., 2008; Nic Lughadha et al., 
2019a). 

On the one hand, unchecked taxonomy (e.g., misspelled names and 
synonyms) and the incomplete collation of species records (e.g., data 
compiled from few data sources) may lead to an under-estimation of a 
species' range, therefore over-estimating its extinction risk. On the other 
hand, records with suspect or incorrect coordinates (e.g., within urban 
areas or geographical outliers) or the use of historical data (where 
continuing presence of species in a location subject to, for example, 
habitat conversion, is in doubt), may overestimate the size of the species 
range, which could be incorrectly assigned a lower risk category (i.e., 
falsely classify a non-threatened as threatened species). In terms of 
allocating resources for conservation, incorrectly assessing a threatened 
species as non-threatened could mean vital resources are deprioritized. 
In contrast, considering a non-threatened species as threatened repre
sents wasted effort. 

Previous studies evaluating the influence of issues with species 

Box 1 
Scenarios on how an incomplete data collation and errors, gaps, and inaccuracies in the taxonomic, spatial, and temporal information can 
influence preliminary Red List assessments (Nic Lughadha et al., 2019a; Zizka et al., 2020, 2021; Panter et al., 2020). Incomplete data collation 
or issues in species-occurrence data may alter the number of records available to perform Red List assessment, which can change the estimates of 
Extent of Occurrence (a metric of range size used to assess species under the IUCN's criterion B). Minor issues in species-occurrence records may 
not change EOO estimates and species' threat category or lead to changes within risk categories (e.g., a threatened species continues to qualify as 
threatened but under a different category). On the other hand, insufficient data collation or significant issues in species-occurrence records may 
lead to changes in species extinction risk status (e.g., consider a threatened species as not threatened). Finally, certain species can only be 
assessed if new data is collated. This may occur, for example, when data from only one data aggregator (e.g., GBIF) is used in Red List as
sessments. According to the IUCN, species are classified as threatened (critically endangered [CR], endangered [EN], and vulnerable [VU]), not 
threatened (near threatened [NT] and least concern [LC]), data deficient (DD), or not evaluated (NE). Hypotheses indicated with an asterisk (*) 
were supported by our findings (Results Sections 3.2 and 3.3).
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occurrence records on preliminary risk assessment based on criterion B 
found contrasting results. Some findings showed a more substantial ef
fect of spatial errors on sensitivity rates (i.e., correctly predicting 
threatened categories) than on specificity rates (i.e., correctly predicting 
non-threatened categories) (Panter et al., 2020). Such impact varied 
depending on the data sources (e.g., GBIF vs. BIEN). In contrast, pre
liminary risk assessment was relatively robust to the presence of records 
with spatial and taxonomic issues (Nic Lughadha et al., 2019a; Zizka 
et al., 2021, 2020), mainly due to wide thresholds of criteria used to 
assess species' extinction risk. Hence, a comprehensive assessment to 
disentangle the impact of issues related to all biodiversity dimensions 
(taxonomic, spatial, and temporal) and an incomplete data collation on 
risk assessment is yet to be examined (Walker et al., 2021). The potential 
impact of taxonomic, spatial, and temporal issues and an incomplete 
collation of records on the Red List assessment is summarized in Box 1. 

Brazil is a mega-diverse nation harboring 35,683 terrestrial plant 
species, of which 53 % are endemics and many under considerable 
threat (BFG, 2021). Ongoing attempts to document extinction have 
resulted in 6046 assessments (CNCFlora, 2021), highlighting the press
ing need for full Red List assessments and making Brazil an ideal case 
study. Here, using a dataset of >30 million records of terrestrial plants 
occurring in Brazil, we quantified how incomplete data collation and 
errors in the taxonomic, spatial, and temporal dimensions of occurrence 
data translate into misclassifications of preliminary extinction risk car
ried out at national scale. By aggregating large amounts of data from 
heterogeneous sources across Brazil, we highlight challenges with 
handling and processing these data. Specifically, we ask the following 
questions: 1) How similar are online databases regarding species- 
occurrence records they share? 2) What is the impact of gaps gener
ated by an incomplete collation of occurrence data – e.g., use of data 

Fig. 1. A schematic representation of the methods used to evaluate the impact of incomplete data collation and issues in species occurrence records on preliminary 
extinction risk assessments. We obtained ~30 million records of terrestrial plants in Brazil from nine data aggregators. These datasets were merged and standardized 
to generate a “raw” dataset after the removal of records lacking scientific names, coordinates, or from doubtful sources. We used the “raw” database to generate four 
partially cleaned databases (taxonomic, spatial, temporal, and clean) containing only one issue (e.g., the taxonomic database only contains taxonomic issues). The 
“raw” and “clean” databases were used to evaluate the similarity between nine datasets. The “clean” and “partially cleaned” databases were used to carry out a 
preliminary risk assessment based on IUCN criterion B. We assessed the performance of preliminary assessments in correctly predicting the Red List categories of 
5524 species with complete published assessments. The performance was measured in terms of overall accuracy, sensitivity (correct prediction of threatened cat
egories), and specificity (correct prediction of not threatened categories) at both levels, binary and detailed. Preliminary assessments were also carried out using 
different reference datasets, including species assessed in the Brazilian Red Book published in 2013 (“Older assessments”), assessments carried out in 2018 (“Newer 
assessments”), and assessments performed considering only species with >15 records (“>15 records”). 
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from a single database (e.g., GBIF) – on estimates of species ranges and 
preliminary extinction risk assessments? 3) What proportion of pre
liminary extinction risk assessments are potentially over-or under
estimated due to inaccuracies and errors in taxonomic, geographical, 
and temporal dimensions of biodiversity data? 4) Which of these issues 
contributes most to misclassifying species extinction risk? 

2. Materials and methods 

2.1. Data compilation and cleaning 

The dataset underlying this study's analyses was compiled in Ribeiro 
et al. (2022). The dataset includes >30 million records for terrestrial 
plant species in Brazil accessed via nine public, freely, and openly 
available online databases (Fig. 1). The compilation included data from 
eight biodiversity repositories: Botanical Information and Ecological 
Network version 4.1 (BIEN, bien.nceas.ucsb.edu/bien); Global Biodi
versity Information Facility (www.gbif.org), Integrated Digitized Bio
collections (iDigBio, www.idigbio.org/), speciesLink network 
(SpeciesLink, splink.cria.org.br), Brazilian Biodiversity Information 
System (SiBBr, www.sibbr.gov.br), Tree flora of the Neotropical Region 
(NEOTROPTREE, www.neotroptree.info), The Latin American Season
ally Dry Tropical Forest Floristic Network (www.dryflor.info), Brazilian 
Biodiversity Portal (ICMBio, portaldabiodiversidade.icmbio.gov.br/port 
al), and from the data paper Atlantic forest epiphytes (Ramos et al., 
2019). 

We used the Biodiversity Data Cleaning (bdc) package for assessing 
the quality of species-occurrence data, considering their taxonomic, 
spatial, and temporal dimensions (Ribeiro et al., 2022; https://cran.r-pr 
oject.org/web/packages/bdc/index.html). The package contains func
tions to clean and assess the quality of biodiversity data grouped in the 
following thematic modules: 1) Merge datasets: standardization and 
integration of different databases in a standardized format; 2) pre-filter: 
flagging and removal of invalid or non-interpretable information; 3) 
taxonomy: cleaning, parsing, and standardizing scientific names; 4) 
space: flagging of erroneous, suspect, and low-precision geographic 
coordinates; and 5) time: flagging and, whenever possible, correcting 
inconsistent collection dates (Fig. 1). 

Each module contains a series of tests to assert data quality. By 
executing each test, original data are retained, and the result is appen
ded in a different field as TRUE (accurate records) or FALSE (records 
flagged as erroneous or suspect). We created a “raw” dataset after 
excluding records flagged as incorrect in the “pre-filter” step, including 
records missing coordinates or species names, in the ocean, with out-of- 
range coordinates, outside Brazil, and from distrustful sources (e.g., 
from drawing and photographs, among others). These records are 
commonly not fit for the Red List assessment without prior amendments 
(Fig. 1). We also excluded records of non-native species (cultivated and 
naturalized), algae, and fungi species (Table S1). 

We used the “raw” dataset to generate four databases of species 
occurrence with different levels of data curation (i.e., three “partially 
cleaned” and one “clean” dataset) (Panter et al., 2020). In each “partially 
cleaned” dataset, all issues were corrected except the problem to be 
tested (Fig. 1). Thus, the “taxonomic” dataset contains only taxonomic 
issues, i.e., synonyms, nomenclatural variants, and misspelled names. 
The “spatial” dataset contains only geographical issues, e.g., records 
assigned to country capital, in urban areas, with low-precision co
ordinates, and geographical outliers (Fig. S1; Zizka et al., 2019). The 
“temporal” dataset contains only temporal issues, including records 
collected before 1970 or containing illegitimate information (e.g., 
collection date in the future). Occurrence data collected in the last 
30–40 years are more likely to be geo-referenced using GPS, and, 
therefore, more accurate (Boitani et al., 2011; Graham et al., 2004); in 
comparison, records collected before the year 1970 are generally asso
ciated with a moderate to a high level of inaccuracies (Tessarolo et al., 
2017). Finally, we created a “clean”, well-curated, and near- 

comprehensive dataset in which all issues were removed or corrected 
(Fig. 1). The “taxonomic”, “spatial”, “temporal”, and “clean” datasets 
were used to perform the downstream analysis (Fig. 1). 

2.2. Database similarity 

To answer the question about the similarity of online databases 
regarding the species-occurrence records they share (Question 1), we 
compared the proportion of redundant information shared between 
them. To do so, we built a similarity matrix with the number of unique 
records (i.e., those with equal species name, latitude, and longitude 
data) shared between databases (Fig. 1). Low similarity values indicate 
the uniqueness of a database, i.e., few records are shared with other 
databases. 

We evaluated the similarity considering the “raw” and “clean” 
datasets separately (Fig. 1). Before assessing the similarity between 
original databases, we removed records missing coordinates or scientific 
names and authority names and annotations from scientific names (but 
kept terms denoting taxonomic uncertain and intraspecific levels such as 
“cf.”, “var”). These procedures were necessary to avoid falsely consid
ering records as duplicated. Since databases contain coordinates with 
different precision, we also evaluated the similarity after rounding the 
geographical coordinates to four decimals degrees. Our approach is 
based upon the amount of potentially duplicate records shared between 
databases since comprehensive and rich meta-data is needed to detect 
actual duplicate records, but such data is seldom available. 

2.3. Preliminary risk assessments 

We used the R package rCAT (Moat, 2017) to generate preliminary 
extinction risk assessments for each species based on extent of occur
rence (EOO; Red List criteria B), a range size metric commonly used for 
extinction risk assessment for plants due to scarcity of population data 
(Brummitt et al., 2008, 2015). The EOO, the minimum area encom
passing all species records, was calculated as a minimum convex poly
gon (IUCN, 2019). Based on EOO size estimates, rCAT classifies species 
in one of the following IUCN categories: critically endangered (CR; EOO 
< 100 km2), endangered (EN; EOO ≥ 100 and <5000 km2), vulnerable 
(VU; EOO ≥ 5000 and <20,000 km2), near threatened (NT; EOO ≥
20,000 and <30,000 km2), or least concern (LC; EOO ≥ 30,000 km2). 

2.4. Accuracy of preliminary risk assessments 

We calculated the accuracy of our preliminary assessments in 
correctly predicting the Red List categories of 5524 species with com
plete published assessments carried out by the Brazilian Center for Flora 
Conservation (hereafter, CNCFlora assessments; CNCFlora, 2021). We 
compared the performance of preliminary evaluations at the binary level 
of threatened (Red List categories CR, EN, or VU) vs. not threatened (NT 
or LC) as well as a more detailed level where predicted Red List cate
gories had to match the published CNCFlora categories (Fig. 1; Zizka 
et al., 2021). Performance of preliminary assessments was calculated as 
overall accuracy, sensitivity (correct prediction of threatened cate
gories), and specificity (correct prediction of not threatened categories; 
Nic Lughadha et al., 2019a). 

2.5. Impact of incomplete collation of species-occurrence data on 
preliminary risk assessments 

To evaluate the impact of incomplete collation of occurrence data on 
risk assessment (Question 2), we performed preliminary extinction risk 
assessments using records from each database separately (e.g., only data 
from GBIF) after removing suspect or erroneous records (Fig. 1). The 
impact of an incomplete records collation on the Red List assessment 
was summarized in four scenarios described in Box 1. No change: no 
change in species risk category; Change within binary categories: 
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changes in risk occur within threat (CR, EN, VU) and not threat (NT and 
LC) binary categories; Changes in binary and detailed categories: a 
threatened species becomes not threatened and vice-versa; Not evalu
ated vs. Evaluated: extinction risk of species cannot be evaluated 
because species are not present in such database. 

2.6. Impact of taxonomic, spatial, and temporal issues on preliminary risk 
assessments 

To address questions 3 and 4, we used each “partially cleaned” 
dataset separately to assess the effect of taxonomic, spatial, and tem
poral issues on preliminary extinction risk assessments (Fig. 1). To 
quantify the effects of taxonomic and nomenclatural errors, we used the 
“taxonomic” dataset to compare changes in the risk category due to non- 
standardized record names. Similarly, to quantify the impact of the 
spatial-related issues on risk assessment, we fixed all problems. Still, we 
kept records with one spatial issue (e.g., outliers) to quantify its relative 
impact on the risk category. This process was repeated for the nine 
spatial issues (Table S1). Finally, to assess the impact of early collections 
or legacy data on risk assessments, we removed all records collected 
before 1970 or containing illegitimate information. It is worth noting 
that changes in the risk category result from changes in the number of 
locality data available to each record due to spatial, taxonomic, or 
temporal issues not corrected or due to an incomplete data collation. 

We also assessed the impact of taxonomic, spatial, and temporal is
sues on preliminary assessments using three additional reference data
sets representing subsets of the CNCFlora data, including 1) species with 
up-to-date assessments carried out post-2018, 2) species with older as
sessments presented in the Red Book of the Brazilian Flora (Martinelli 
and Moraes, 2013), and 3) species with >15 occurrence records, a 
number suggested as the minimum for reliable automated assessments 
(Fig. S1; Rivers et al., 2011). 

We used R (v. 4.02; R Core Team, 2020) to perform all analyses, the 
package bdc for data-cleaning (Ribeiro et al., 2022; https://cran.r-pr 
oject.org/web/packages/bdc/index.html), and ggplot2 (Wickham, 
2016) to create all figures, except the Sankey diagram, which was 
generated using networkD3 package (Allaire et al., 2017). 

3. Results 

3.1. Data cleaning 

From >30 million records in the original databases, only ~3.9 
million records (13 %) passed all data-cleaning tests. The number of 
records detected and removed in each module of the data-cleaning 
workflow can be found in Table S1. As expected, taxonomic, spatial, 

and temporal errors changed the number of occurrences and species 
available for carrying out preliminary assessments. Without harmo
nizing species names (the “taxonomic” dataset), 63,112 specimens were 
recognized. After the taxonomic harmonization, the number of species 
was reduced to 38,690 in the “spatial” dataset and 38,207 in the “tem
poral” dataset. The “clean” dataset contains data of 37,519 species 
(Table S2). We found a similar pattern of species reduction in species' 
availability for conducting preliminary assessment after cross- 
referencing species from our dataset and CNCFlora data (Table S2). 

3.2. Similarity between databases 

Overall, we found a higher similarity of data shared between large 
data aggregators than with regional and taxon-specific databases 
(Fig. 1). Regarding the proportion of species-occurrence records shared 
between “raw” databases, we found higher similarity levels (75–95 % of 
similarity) between BIEN, GBIF, iDigBio, and SpeciesLink databases 
after rounding coordinates to four decimals degrees (Figs. S1 and S2). 
Rounding coordinates to four decimals degrees and removing suspect or 
erroneous records (i.e., the similarity between “clean” databases) 
increased similarity levels (80–98 %; Figs. S3–S4). Most data from the 
DRYFLOR are available in NEOTROPTREE, but only after rounding co
ordinates, and species-occurrence data from both databases are not 
shared with other databases (Figs. S1 and S3). Considering the unique
ness of each database weighted by its number of records, databases 
containing fewer records (e.g., AT_EPIPHYTES, DRYFLOR, and NEO
TROPTREE) had the highest proportion of unique records (Table S3). 

3.3. Incomplete collation of occurrence data 

We found a strong impact of an incomplete collation of occurrence 
data on the performance of preliminary risk assessments in correctly 
classifying species in the binary categories threatened and not threat
ened. From the 5524 species presented in the “clean” database (repre
senting 94 % of species assessed by CNCFlora), BIEN, SiBBr and GBIF 
contained data for assessing the extinction risk of 69 % (n = 3806), 70 % 
(n = 3903) and 78 % (n = 4299) of species, respectively (Fig. 2, 
Table S4). The overall binary accuracy of preliminary assessments per
formed using data from only a single database ranged from 61 % 
(iDigBio) to 72 % (DRYFLOR). Interestingly, while the sensitivity rates 
were often low (13 to 48 %), specificity rates ranged from 84 % (ICMBio) 
to 94 % (DRYFLOR), highlighting that data from single databases can be 
sufficient to estimate species' range and accurately identify not threat
ened species (Table S4). 

Fig. 2. Impact of an incomplete collation of 
species-occurrence records (i.e., the use of re
cords from only a single database) on the per
formance of preliminary species extinction risk 
assessments. Changes in species category were 
evaluated by comparing the CNCFlora assess
ments (n = 5524 species) against the category 
derived from preliminary assessments using a 
single database after removing erroneous or 
suspect records. The impact of an incomplete 
records collation on the Red List assessment is 
summarized in four scenarios. No change: no 
change in species risk category; Change within 
binary categories: changes in risk occur within 
threat (CR, EN, VU) and not threat (NT and LC) 
binary categories; Changes in binary and detailed 
categories: a threatened species becomes not 
threatened and vice-versa; Not evaluated vs. 
Evaluated: extinction risk of species cannot be 

evaluated because species are not present in such database.   
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3.4. Taxonomic, spatial, and temporal issues 

The accuracy of preliminary risk assessments calculated at binary 
level (i.e., correctly classifying species as threatened and not threatened) 
was marginally affected by unchecked taxonomy, errors in geo- 
referenced information, and the use of early collected or legacy data 

(Fig. 3). While specificity rates were often high, ranging from 89 % 
(“taxonomy” dataset) to 92 % (“spatial” dataset; Fig. 4), sensitivity rates 
were more affected by spatial errors (38 %) and temporal issues (48 %), 
and slightly affected by the presence of taxonomic issues (61.5 %) 
(Fig. 3). 

Using records with non-standardized taxonomy slightly affected the 

Fig. 3. The performance of preliminary extinction risk assessments carried out based on “partially cleaned” datasets (containing taxonomic, spatial, or temporal 
issues) and on a “clean” dataset in correctly classifying species as threatened or not threatened compared with CNCFlora assessments. The performance was measured 
in terms of overall accuracy, sensitivity (correct prediction of species as threatened), and specificity rates (correct prediction of species as not threatened). 

Fig. 4. Impact of taxonomic, spatial, and temporal issues on preliminary species extinction risk assessments. Changes in the preliminary assessment were evaluated 
by comparing CNCFlora category against the category derived from datasets with different data curation, including a) non-standardized taxonomy, b) spatial issues, 
c) temporal issues, d) no issue. Numbers within the bar represent the proportion of species in the category. Acronyms refer to IUCN Red List categories: CR, critically 
endangered; EN, endangered; VU, vulnerable; NT, near threatened; LC, least concern; DD, data deficient. 
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performance of preliminary risk assessment in correct classifying species 
in risk categories compared with database with no issue (Fig. 4a). In 
contrast, the presence of spatial issues and old records tended to over
estimate the number of least concern species (Fig. 4c). Compared to 
species correctly classified as threatened and not threatened using the 
“clean” dataset, geographic outliers and records in urban areas were the 
spatial issues that most contributed to the misclassification of species 
category (Figs. 4b and S5). 

As expected, the detailed accuracy (i.e., correctly placing species into 
six IUCN categories) was often low (51–53 %) and more affected by 
spatial issues (Fig. S6). Regarding the assessment carried out using 
different CNCFlora reference datasets, the binary accuracy (64–78 %) 
and specificity (78–99 %) were the highest by using as reference the 
dataset containing only species with >15 records with no issue (Fig. S7). 
Overall, the sensitivity rate was the lowest when the preliminary 
assessment was carried out based on a dataset containing both species 
with >15 records and spatial issues (Fig. S7). The sensitivity of pre
liminary risk assessment in predicting the category of species assessed 
after 2018 (“newer assessments”) had the highest sensitivity rates (69 
%) when based on datasets with no issue or only taxonomic issues 
(Fig. S7). 

4. Discussion 

We investigated the impact of incomplete data collation and taxo
nomic, spatial, and temporal issues in species' occurrence data on pre
liminary risk assessments. We found that the overall accuracy and 
specificity (correct prediction of non-threatened species) of preliminary 
risk assessments are less affected by incomplete data collation and issues 
in all three dimensions of species occurrence data. However, sensitivity 
rates (correct predicting threatened species) were often low to moderate 
and strongly affected by incomplete data collation and spatial issues, 
and marginally affected by temporal issues. Our results demonstrate that 
species' preliminary risk assessments accurately identify non-threatened 
species, even when data collection is low and in the presence of issues in 
species occurrence data. Such an approach can be used to efficiently 
prioritize likely threatened species for full Red List assessments, saving 
time and resources needed for such effort. In addition, caution is needed 
before declaring a species as threatened without considering data 
collation intensity and quality. 

Data from natural history collections have errors that could lead to 
misclassification of extinction risk and undesirable conservation outputs 
(Maldonado et al., 2015; Panter et al., 2020). Our results showed that 
data cleaning is a fundamental process to improve the sensitivity of 
preliminary risk assessment and that specificity is marginally affected by 
both issues in occurrence records and incomplete collation of data 
(Panter et al., 2020). As the extent of occurrence (EOO) is purely a 
measure of range size, the presence of spatial issues (e.g., outliers and 
records in urban areas) often overestimates species range size, resulting 
in misclassification of many threatened species as not threatened. In 
contrast, the presence of spatial issues marginally improved specificity 
compared to specificity rates of preliminary assessment carried out using 
the “clean” dataset as reference. This may be due to the cleaning process 
that excluded records flagged as outliers or within urban areas. We 
stressed that our results and conclusion regard preliminary risk assess
ments based on IUCN's criterion B. Machine-learning methods used to 
predict Red List categories are commonly more robust to data avail
ability and spatial issues (Zizka et al., 2021). 

In the era of Big Data, many biodiversity data today are increasingly 
digitized and made available online through a wide range of heteroge
neous databases (Kissling et al., 2018). By assessing the commonalities 
of databases regarding the number of species-occurrence they share, we 
found an overall high similarity between large data aggregators (e.g., 
GBIF, BIEN, and SiBBr) and an often-lower similarity between such 
databases and regional and taxon-specific databases. Our results showed 
that many records from small or local datasets are not shared with large 

data aggregators, highlighting the importance of such databases for 
estimating species' Red List category, especially for threatened species. 

An incomplete collation of species records affects preliminary risk 
assessments' sensitivity more than specificity rates. On the one hand, our 
results showed that preliminary assessments carried out based on data 
from single databases had moderate accuracy (61–72 %) and high 
specificity (83–93 %). These results highlight that even a reduced 
number of occurrence records are likely sufficient to represent the range 
of not threatened species, offering a helpful first step before investing in 
further collation of data (Nic Lughadha et al., 2019b; Panter et al., 2020; 
Rivers et al., 2011). Nevertheless, assessments based on records from 
single databases can only be performed on a reduced set of species 
compared to the total species pool assessed when compiling data from 
several sources. On the other hand, we found that the overall sensitivity 
of species' preliminary risk was commonly low and strongly affected by 
an incomplete data collation and spatial issues and moderately affected 
by temporal issues. An insufficient collation of species-occurrence re
cords is likely only to represent a fraction of species' range, underesti
mate thus EOO and resulting in lower sensitivity rates. In contrast, 
spatial issues and older or legacy data often result in larger estimates of 
EOO, thereby decreasing sensitivity rates. 

Unchecked taxonomy and the removal of early collected or legacy 
records also led species to be classified as data deficient in a smaller 
proportion than an incomplete data collation and spatial issues. The 
negligible impact of unchecked taxonomy can indicate that synonyms 
and misspelled names had a small impact on the sensitivity of pre
liminary risk assessments or that databases had a relatively well-curated 
and updated taxonomy. Unchecked taxonomy, in most cases, did not 
decrease EOO to below the threshold to classify a threatened species as 
not threatened (but see Nic Lughadha et al., 2019b). Outdated taxon
omy, however, can result in species that cannot be assessed due to 
taxonomic remodeling (lumping and splitting; Nic Lughadha et al., 
2019b). Similarly, several species could not be assessed if older or legacy 
data were removed since these records constitute the best and single 
information to support the Red List assessment for some species (IUCN, 
2019). 

As shown by our results, drawbacks in taxonomic, spatial, and 
temporal dimensions of species-occurrence data can result in a range of 
possible estimates of EOO and conservation categories, particularly for 
rare species in which the exclusion of records could lead to extensive 
modification on the EOO estimates (Rivers et al., 2011; Zizka et al., 
2020). When assessing the extinction risk of many species, it is chal
lenging to determine whether a record assigned as suspicious is de facto 
erroneous. As a single category must be defined when assessing IUCN 
Red Lists status, it is highly recommended to adopt a precautionary but 
realistic approach by informing the risk category from the best available 
information (IUCN, 2019). 

There is a clear need for a drastic increase in the production rate of 
species risk assessment, especially in tropical countries, where species 
diversity and threats to plants are greatest. The robustness of pre
liminary risk assessments based on criterion B, especially to identify 
non-threatened species highlights the importance of preliminary risk 
assessments to efficiently prioritize potentially threatened species for 
full Red List assessments (Bachman et al., 2020). As the sensitivity of 
preliminary risk assessments was low and more affected by incomplete 
data collation and spatial issues, continuous efforts to ensemble and 
generate high-quality primary biodiversity data should be a priority in 
parallel with the increasing use and improvement of methods to facili
tate and expedite Red List assessments. 
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