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Shedding light on the complex relationship between
forest restoration and water services
Viviane Dib1,2,3 , Pedro H. S. Brancalion4 , Sin Chan Chou5 , Miguel Cooper6 ,
David Ellison7,8,9 , Vinicius F. Farjalla10 , Solange Filoso11,12 , Paula Meli13,14 ,
Aliny P. F. Pires15,16,17,18 , Daniel A. Rodriguez19 , Alvaro Iribarrem1,20,
Agnieszka Ewa Latawiec1,20,21,22 , Fabio R. Scarano10 , Adrian L. Vogl23 ,
Carlos Eduardo de Viveiros Grelle10, Bernardo Strassburg1,20

Although native vegetation is a determinant of aquatic ecosystems’maintenance, forest restoration has been linked to decreases
in water yields worldwide. Here, we clarify linkages between forest restoration and water services and identify gaps in the lit-
erature critical for evaluating the benefits of forest restoration on water yields. Also, we discuss possible strategies to improve
forest restoration planning and implementation.We argue that the apparent disconnect between estimates in the literature and
real-world observation reflects the limitation of studies, methods, and approaches in capturing forest and water relationships’
complex nature. Future research should focus on hydrologic parameters other than annual streamflow flow (such as infiltra-
tion, groundwater recharge, and flow regulation) and encompass broader spatial–temporal scales. More empirical studies
are needed, especially in the tropics, as the forest–water dynamics in these areas are unique and poorly understood. Filling this
gap is critical to improving the decision-making process related to water management and governance.
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Implications for Practice

• A better understanding of forest restoration impacts on
water services (including flow regulation, groundwater
recharge, precipitation recycling, and water quality) is
paramount to defining target areas to be restored around
the globe.

• The impacts of forest restoration on water vary with time
and depend on where and how restoration interventions
are implemented. To design the best restoration strategy,
we must considerwho benefits from or might be impacted
negatively by unintended consequences on water
services.

• Scaling up ecosystem restoration actions is the challenge
posed to the world by The UN Decade on Restoration
(2021–2030). We believe that the hydrological dimen-
sions can provide an excellent argument to scale restora-
tion by stimulating partnerships at regional and global
scales while considering local beneficiaries.

Introduction

Several water-related ecosystem services are derived from forest
functions, such as groundwater recharge, buffering and filtering
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of pollutants, regulation of rainfall and seasonal flows, and the
provision of habitats and scenic landscapes (UNECE 2018).
To sustain these functions, forest restoration has emerged as a pre-
ferred tool to recover water services when native forests are dis-
turbed or converted to anthropogenic land uses (Chazdon
et al. 2017). Controversially, forest restoration has been linked to
decreases in annual water yields worldwide (Filoso et al. 2017;
Zhang et al. 2017). This apparent dubious relationship may limit
the adoption of forest restoration actions in this context
(Ellison 2018). Here, we dive into the forest–water nexus’s com-
plex nature to explore its linkages and discuss how forest restora-
tion interacts with the provision of water-related services. We
alsoexplore theresponseofoftenomittedparametersofhydrologic
processes (such as groundwater recharge and flow regulation) and
consider the broader spatial–temporal scales to evaluate the poten-
tial benefits of forest restoration on watershed functions and
attributes.

The Forest–Water Nexus

Forests and water are interconnected in a socioecological
system, the “forest–water nexus” (Springgay et al. 2019).
At catchment scales, restored forests are known to affect key
hydrologic processes that lead to positive effects on ecosystem
resilience and help to support desired ecosystem services, such
as the regulation of water flows and water quality (Neary
et al. 2009; de Mello et al. 2020). Forested and well-managed
catchments also protect local and downstream aquatic ecosys-
tems and people relying on them, preserving livelihoods and
cultural diversity. At the regional and continental scales, forests
contribute to atmospheric water recycling, including cloud gen-
eration, precipitation, and moisture transportation (Sheil 2018).
From the Hydrospace perspective, that considers sources and
sinks of air moisture, moisture transportation from upwind
restored areas might increase water yields and land productivity
in downwind basins (Ellison 2018; Fig. 1). Conversely, forests
can reduce local water yield as trees intercept, consume, and
transfer water to the atmosphere. These latter processes form
the groundwork of most studies that link forest restoration to
declining water availability.

The prevailing understanding that forest restoration diminishes
water yields is largely based on information from studies available
to date, which have a series of limitations in terms of design and
methods (Filoso et al. 2017). Most empirical studies are typically
conducted at relatively small spatial and temporal scales. Studies
that focused on longer temporal scales (e.g. >50 years) and larger
spatial scales (e.g. >1,000 km2) adopt modeling approaches
(Filoso et al. 2017; Zhang et al. 2017), often limited in capturing

the complexity of the water cycle (Ellison et al. 2019). Also, most
studies are based on afforestation of nonnative species, and focus
only on changes in water yields (usually annual streamflow). To
review this paradigm of the negative impact of forest restoration
onwater production, we need to understand how forest restoration
affects the water cycle in the long term and beyond the catchment
scale, especially the feedback processes that control precipitation
recycling.

A Matter of Time and Space?

In a few years after restoration, vegetation can retain nutrients
and sediments, reducing soil erosion, siltation of water bodies,
and improving downstream water quality (Gageler et al. 2014).
In long temporal scales, restored forests improve soil attributes
such as moisture, water storage, and infiltration due to the litter
layer, the accumulation of large organic debris, root system,
and soil biodiversity recovery (Ilstedt et al. 2007). Improving
soil attributes depends on the degradation level and historical
land-use transitions and might take years or decades to occur
(Lozano-Baez et al. 2019). The gain in infiltration rates can
result in groundwater recharge improvement depending on cli-
mate and geophysical parameters, such as precipitation patterns,
relief settings, slope, and soil type (Moeck et al. 2020). Late suc-
cessional forests can act as “sponges” (due to their extensive
root systems and moisture-retaining leaf litter), providing sea-
sonal flows regulation (reducing peak flows and increasing base-
flows) and overland flow reduction (Peña-Arancibia et al. 2019).
In general, seasonal flows and groundwater recharge variation
depend on the net effect of changes in infiltration and evapo-
transpiration (ET; Bruijnzeel 2004). However, differences in
infiltration rather than ET drive the groundwater recharge and
seasonal flows in the humid tropics (Krishnaswamy et al. 2013).

Evapotranspiration is the combination of plant transpiration
and soil evaporation. Early successional restored forests exhibit
higher ET profiles due to pioneer plant physiology (they usually
grow faster and consume more water) and elevated evaporative
rates (Giambelluca 2002). Water use tends to reduce and stabi-
lize during the late successional stage resulting in ET reduction.
For instance, an empirical study showed that ET and gross pri-
mary productivity are higher in secondary than in native forest
in the Amazon (Von Randow et al. 2020). It suggests that initial
drops in water yield gradually recover over time. However,
strong evidence for this hypothesis is still needed. A recent study
showed that the ET rates can be higher in late successional for-
ests than in secondary forests (Meerveld et al. 2020)—although
authors recognize their late successional forest plots had rela-
tively many young trees. A meta-analysis conducted by Bentley
and Coomes (2020) showed that in most catchments studied, the
declines in annual streamflow after forest restoration persisted
after decades. Catchments from tropical regions were underrep-
resented in this study.

On the one hand, we still lack evidence showing streamflow
recovery after restored forest reaching late successional stages.
On the other hand, it is known that deforestation increases
annual water yields, primarily due to the decrease in ET rates
(Zhang et al. 2017). However, part of the water produced in a

20Department of Geography and Environment, Rio Conservation and Sustainability
Science Centre, Pontifical Catholic University of Rio de Janeiro, R. Marquês de São
Vicente, 225, G�avea, Rio de Janeiro RJ, 22451-000, Brazil
21Faculty of Mechanical Engineering, Opole University of Technology, Ul. St,
Stanisława Mikołajczyka 5, 45-271 Opole, Poland
22University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, U.K.
23Natural Capital Project, Woods Institute for the Environment, Stanford University,
Stanford, CA, U.S.A.

© 2023 Society for Ecological Restoration.
doi: 10.1111/rec.13890

Restoration Ecology2 of 6

Forest restoration and water services



short period during the rainy season does not infiltrate to feed
water tables or subsurface flows (Marques et al. 2022). This
excess of water flows overland and remains unavailable for
human use, increasing flooding risks, soil erosion, and water
bodies siltation (Bradshaw et al. 2007; Gharibreza et al. 2020).
Whether water yields reduction is a service or a disservice is
context-dependent. In this sense, the observation of flow regula-
tion and groundwater recharge can be more helpful to under-
stand the real effects of forest restoration on water availability
in the long run than focusing on the annual streamflow.

At larger spatial scales, precipitation recycling occurs both
within and beyond the catchment boundaries (Wang-erlandsson
et al. 2018). Forests act as “pumps” increasing air moisture and
rain downwind (Peña-Arancibia et al. 2019). Depending on the
size and location of the reforestation area, climate conditions
and land-use and cover of downwind catchments, annual water
yield can also increase. A better understanding of the Hydro-
space, that is, considering both upstream and downstream and
upwind and downwind interactions, is critical to guide
decision-makers in addressing forest restoration-related phe-
nomena beyond the basin. Coupled land-surface-atmosphere
models can assess feedback processes that control precipitation
recycling (Pilotto et al. 2017). Such a modeling approach—
integrated to ground level and remote sensing earth
observations—could improve our ability to define atmospheric
moisture flux sources and sinks (Ramos et al. 2019).

How about the Tropics?

Tropical forests present high ET rates and are responsible for cli-
mate regulation on regional and continental scales (Ramos
et al. 2019). They are arguably among the most important areas

for proving the relationship between forests and water supply,
but are underrepresented in the literature (Filoso et al. 2017;
Bentley & Coomes 2020). Filling this gap is critical as hydrome-
teorological processes in the humid tropics differ from other
regions. They usually present greater energy inputs (such as
moisture fluxes from the mid latitudes and intense precipitation)
and high rates of weathering, creating large volumes of water
and sediment transport. Atmospheric moisture cycling also dif-
fers from other regions by its warmer and uniform temperatures
and the pronounced spatial gradients of precipitation (Wohl
et al. 2012). The major impact of deforestation on the water
cycle in these areas is the reduction of the local ET, thus reduc-
ing the total amount of moisture available for precipitation recy-
cling (Bruijnzeel 2004).

Forest cover loss in the tropics has been rising steadily over
the past decades and these areas hold great global restoration
opportunities (Brancalion et al. 2019; Strassburg et al. 2020).
Many projects of forest restoration have been proposed over
the next decades to meet national and global commitments, such
as the Bonn Challenge and the UNFCCC Paris Agreement, rein-
forced by the ongoing UN Decade on Ecosystem Restoration
(Sewell et al. 2020). Less developed countries—which also fight
severe water security problems—are the ones pledging the high-
est amount of area for restoration (Fagan et al. 2020). The imple-
mentation of these projects can be an opportunity to developing
a better understanding on the forest–water relationship, but also
must be conducted based on the knowledge science can provide
so far. Identifying the Hydrospace around the main tropical for-
ests, the impacts of large-scale restoration scenarios on precipi-
tation recycling, the potential of water quality delivery, and the
potential of groundwater recharge are critical to determining
the priority areas to be restored in the globe.

Figure 1. Representation of the Hydrospace concept (Ellison 2018), considering not only upstream and downstream but also upwind and downwind forest-water
interactions and relationships. This figure highlights the potential water-related services at the local and regional scales after a catchment recovery.
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Lessons for Water Governance

Knowledge production and water governance are cross-
cutting research agendas relevant to tackle problems of water
crisis from local to global levels (Mdee et al. 2022). Where
conservation efforts are not enough, the spatial planning of
forest restoration and the identification of priority areas to
be restored is crucial to optimize benefits and minimize costs
and unintended consequences (e.g. local water yield declines
in the early years following restoration). Forest restoration
outcomes for water services depend significantly on how
and where restoration interventions are implemented. Resto-
ration strategies can vary greatly in their impacts on hydro-
logic processes. Also, landscape variation on elevation,

slope, soil type, and water table depth significantly impacts
hydrologic processes (Sheil 2018; Fig. 2).

Forest cover may compete with other land uses that provide
more immediate economic returns. Considering who benefits
from water services or might be impacted by unintended conse-
quences is fundamental to design the best restoration strategy
(Palmer & Filoso 2009). Conflicts of interests can emerge when
restoration targets are outside of the beneficiaries’ location
boundaries. Because most decision-making about water tradi-
tionally derives from catchment dynamics, the tendency is to
emphasize the needs of the catchment and ignore the regional
community’s needs. In this sense, downwind/downstream com-
munities are likely to be disadvantaged.

Figure 3. Hydrologic dynamics operating from local to global scales and their respective governance and strategies that should be adopted for better including
water-related services into restoration planning and implementation.

Figure 2. Landscape opportunities to favor specific water services. Flat areas like hill tops and plains, especially in high altitudes, favor infiltration and
groundwater recharge. Conversely, restoration in sloped areas can reduce surface overland flow and sediment export, protecting water bodies from siltation
(Liu et al. 2008). Forest restoration in riparian zones also reduces pollution risks and thus maintains water quality (Gageler et al. 2014).
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From a regional/global perspective, atmospheric teleconnec-
tion dynamics must be considered (Keys et al. 2017). Regional
partnerships and transboundary agreements are critical to devel-
oping and enforcing legal tools and defining target areas for for-
est conservation and restoration (Melo et al. 2020). The big
challenge is to define strategies to adequately integrate
regional-scale hydrologic concerns into the modeling and polit-
ical decision-making framework. Recommendations on water
governance and forest–water management strategies are sum-
marized in Figure 3.

Finally, we suggest a research agenda focused on disclosing
the spatial–temporal scale dependence of the restoration impacts
on water. It should include long-term and large-scale empirical
studies, especially in the tropics, considering effects of restora-
tion on ET, water infiltration, groundwater recharge, and flow
regulation. Unsolved questions should be addressed, such as:
(1) How long do catchments take to return to predisturbance
water yields and seasonal flows after forest restoration?
(ii) Does this change with catchment size and previous land
use? and (iii) How and at what scale is the atmospheric moisture
produced by forests reintegrated into the terrestrial hydrologic
processes?
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